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1. Introduction

Cracks grow when there is enough mechanical energy available

in the system to drive them forward. This is the Griffith

fracture criterion: that energy released by crack growth must be

sufficient to meet the energy requirements of a growing crack,

termed the fracture energy of the material and denoted here G-c

(1,2). We have calculated the rate of release of strain energy

for a circular crack, of radius c, growing in a layer of an

elastic material bonded between two rigid spheres, Figure 1, or

two rigid flat surfaces, Figure 2. The crack is placed either in

the center of the elastic layer, Figures la and 2a, or at the

center of the interface between one rigid material and the elastic

layer, Figures lb and 2b. The first corresponds to an internal

crack in the elastomeric material and the second to a defect in

adhesion. The corresponding measures of strength are G units of-C

energy required to tear through unit area of material and G units-a

of energy for debonding unit area of interface.

The elastic material is assumed to be linearly-elastic and

virtually incompressible. Finite element methods are used to

calculate the stiffness of the models for various sizes of the

crack, and hence the strain energy W corresponding to a given

applied force and deflection. In this way the reduction AW in

strain energy brought about by the presence of the crack is

evaluated for various crac i dii.

A crack will grow if the Lte of reduction in strain energy at

constant deflection is sufficiently large, i.e., if

a(AW)/ac > 2acG c (or 2acGa). (1)
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We have evaluated the quantity on the left-hand side of Equation 1

numerically, for a wide range of geometrical shapes. The results

are presented here. They enable us to calculate the critical

loads at which cracks of a given size will grow, when the fracture

energy G or G is known. Some conclusions are also drawn on the-c -a

final size of cracks formed between two rigid surfaces.

Cracks are initiated in two ways. They occur naturally, as

defects within the material or at the bonded interface.

Measurements of the strength of rubbery materials suggest that

natural" flaws or stress-raisers equivalent to sharp cracks,

about 50 jm in size, are always present (3,4). Cracks are also

formed within an elastomer by internal fracture under a dilatant

stress (5). Any small void within an elastomeric solid will

expand elastically without limit when a critical level of triaxial

tension -P is applied, of about 5E/6, where E is the tensile

(Young) modulus of elasticity (5,6). In practice, the void bursts

open to form an internal crack when

-P > 5E/6. (2)

This critical condition is readily set up in elastomeric

composites near rigid boundaries. For example, cracks appear

abruptly near the poles of an isolated rigid spherical inclusion,

in the direction of applied tension, when the local triaxial

tension reaches the critical value (7,8). When two rigid spheres

are located close together in the direction of an applied tension,

then a crack appears in the elastomer layer midway between them
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when the critical condition is reached there (8,9). indeed, it

seems that a crack always forms where, and when, the critical

dilatant stress is set up.

We now turn to the question of the applied stress at which

cracks will grow and the size that they will eventually attain.

These questions are independent of the origin of the cracks

themselves, but in considering them we also are led to consider

the question of which criterion is met first, Equation 1, for

growth of an initial defect, or Equation 2, for bursting open of

an initial void.

2. Analytical procedures

A finite element arrangement with cylindrical symmetry was

employed, using 400 elements. It is shown schematically for a

center crack of radius c in Figures 3 and 4. In this case only

one-half of the complete unit was modeled, but for a single

interfacial crack at one surface it was necessary to model the

complete unit. Calculations were carried out using the ADINA code

(10), the material between the end-pieces being assumed to be

linearly-elastic with a value of Poisson's ratio v of either

0.4999 or 0.49, corresponding to extreme values for rubber

compounds.

Values of applied force F were computed for unit deflection of

the model and hence the elastic strain energy W was obtained,

given by F/2. These values were smaller, of course, than the

value W when no crack was present, and they decreased as the-O

radius c of the crack was made larger, becoming zero when the

radius of a central crack reached the radius a of the specimen or
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when the interfacial crack became equal in size to the original

bonded area.

Values of the reduction AW, relative to the value W in the

absence of a crack, are plotted in Figures 5-8 as a function of

the crack radius c, relative to the radius a of the specimen.

Four representative cases are shown: thin and thick elastic layers

bonded between spherical end-pieces (Figures 5 and 6), and thin

and thick elastic layers bonded between flat end-pieces (Figures 7

and 8).

3. Results and discussion

(1) Small cracks in thin elastic layers

When the crack was extremely small in comparison with the

radius a of the specimen, then the reduction AW in strain energy

that it caused was too small to determine with any accuracy. As

the value of c was increased, a linear relation was found to hold

between log AW and loo c, as can be seen in Figures 5-8, with a

slope of 3 in this representation. Thus, when the crack size was

small in comparison with the specimen radius,

3AW/W = (c/e) , (3)

where e is a characteristic length of the stress distribution in

elastic layers. e may be regarded as an inverse measure of the

sensitivity of the stress distribution to the presence of a crack.

Large values of e correspond to small reductions in elastic strain

energy for a crack of given size.
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Values of e determined from relations like those shown in

Figures 5-8 are given in Table 1 for various thicknesses h of the

elastic layer. They were found to be virtually the same for the

two values of Poisson's ratio used here, 0.49 and 0.4999. No

distinction is made hereafter between the two results.

Values of e are plotted against the thickness h, relative to

the radius a of the cylindrical specimen, in Figures 9 and 10,

using logarithmic scales for both axes. In this representation

they follow linear relations initially, with a slope of unity,

corresponding to a direct proportionality between e and h:

e = ah , (4)

Values of the constant of proportionality I are given in Table 2.

They were close to unity in all cases, indicating that the

characteristic length e of the stress distribution in thin bonded

layers is similar in magnitude to the thickness h of the layer

itself. However, they were clearly smaller for cracks growing in

the center of the elastic layer than for interfacial cracks of the

same size. Thus, from Equation 3, more energy is released by a

central crack than by an interfacial crack. From the computed

values of C, we deduce that about twice as much energy is released

by a central crack, Table 1. This is consistent with the

conclusion of Andrews and King (11), that the rate of release of

strain energy near a rigid boundary is only one-half of that for a

central crack because only one-half as much material is made

stress-free as the crack grows.
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tii) Small cracks in thick elastic layers

When the layer thickness h was relatively large, of the same

order as the radius a of the specimen or larger, then the

characteristic length e no longer followed a direct

proportionality with h. Instead, it tended to increase more

slowly, as shown in Figures 9 and 10. The logarithmic relations

shown there at large values of h have slopes of 1/3, corresponding

to

= nh1 /3  (5)

The coefficients L3 were found to be in satisfactory agreement with

theoretical values, derived below, of 0.92 for a center crack and

1.13 for an interfacial crack.

(iii) Theoretical result for a small crack in a thick layer

Sack's solution for the breaking stress ab of a long

cylindrical specimen containing a small central crack of radius c

takes the form (12),

a 2 = EG /3c, (6)

where E is the tensile (Young) modulus of elasticity of the

material. Substituting in terms of the strain energy W and•-O

strain energy density U, i.e., the strain energy per unit volume

in regions remote from the crack, where

U /2E
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and

Wo = rah(o /2 E),

and employing the Griffith criterion for propagation of a circular

crack of radius c, Equation 1, we obtain

AW 4c 3U, (7)

corresponding to

AW/W = (4/)c 3/a 2h. (8)

Thus, a small crack in the center of a long cylindrical block in

tension causes a reduction in strain energy given by Equations 7

and 8. On comparing Equations 3 and 8, the characteristic length

e is given by

= (za 2/4)i/ 3h I/3 . (9)

Analogous relations for an interfacial crack take the form

-2-2 = 2aEGa/ 3c,

AW = 2c3 U,

and

AW/W = (2/u)c 3/a2 h

in place of Equations 6, 7 and 8.

Thus, the observed form of the dependence of e upon h for thick

layers is accounted for, and a theoretical value obtained from
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Equations 5 and 9 for the coefficient [3 [ (ga /4)_ i/3 for a

central crack and (ga2 /2)1/ 3 for an interfacial crack]. A

quantitative comparison of these values of D with the calculated

results is made in Figures 9 and 10. Values of L for cracks in

thick elastic layers are seen to be in satisfactory agreement with

the theoretical values when h/a is greater than unity, for

specimens with either spherical or flat end-pieces, containing

either central or interfacial cracks. Thus, both the form and

magnitude of the computed rate of release of strain energy by a

small crack in a thick elastic layer are in reasonable agreement

with analytical solutions. This agreement lends support to the

other results, when complete analytical solutions are not

available.

(iv) Large cracks

The computed relations for reduction AW in strain energy,

Figures 5-8, show interesting differences as the crack radius c is

made larger. They depart from a proportionality to c3 , but

deviate in different ways, depending upon the layer thickness h.

For relatively thin layers, Figures 5 and 7, they become much less

sensitive to crack size, approaching a constant value, i.e.,

becoming largely independent of c as c approaches its maximum

possible value, the radius a of the cylindrical specimen. For

thick elastic layers, on the other hand, Figures 6 and 8, the rate

of release of strain energy by a growing crack stays constant or

increases when the crack radius becomes large. These differences

suggest that a crack growing in a thin layer will slow down and

stop, because the rate of release of strain energy becomes less,
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whereas a similar crack growing in a thick layer will accelerate,

in view of the increasing rate at which energy becomes available

to it.

(v) Predicted loads at which a small initial crack in a thin

elastic layer will grow

Equations 3 and 4 lead directly to a condition for growth of

an initial crack of radius c in terms of the strain energy W

3 3W 0. (2a/3)3 h G /c (10)Oa- c

using the Griffith fracture criterion, Equation 1. Now,

approximate relations are available for the stiffness, and hence

strain energy Eo, of thin bonded elastic layers. For example,for

a layer bonded between two flat plates, with a radius a much

larger than the thickness h, we have (13,14)

F = zra4 ES/2h 3  (11)

and for a thin layer bonded between two rigid spheres (15,16),

F = rra 2 ES/2h. (12)

On substituting for W in Equation 10, critical values for the
--O

mean applied stress o (= F/aa ), denoted c are obtained as

-2 3 (3( 2 > 2a3EGc/3c (13)

and
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-2 , 3 2E
'ac (h/a)EG C/3c, (14)

respectively.

Recalling that the coefficient a is approximately equal to

unity, Equation 13 indicates that a small crack within a thin

bonded layer will grow at a nean applied tensile stress of about

the same magnitude as that for a large sample containing a crack

of the same size, Equation 6. There is little effect of

proximity of bonded planes on the tendency of a crack to

propagate. But Equation 14 shows that a crack in an elastic layer

bonded between two closely-spaced rigid spheres is much more

likely to grow. In this case, the critical stress is reduced by

the ratio h/a of sphere spacing to radius. For example, if the

spacing h is one-tenth of the radius a, then the fracture stress

will be only one-tenth of the regular tensile breaking stress.

However, for closely-spaced spheres the rate of release of

strain energy falls off markedly as the crack grows, Figure 5.

Thus, although a crack will start to grow at a low stress, it will

not continue to propagate until the sample is severed. Instead,

it will stabilize at a finite size. This is precisely what is

observed (9).

(vi) Crack growth or void expansion?

Equation 13 applies to a pre-existing crack in a thin layer

bonded between flat surfaces. Unless the crack is unusually

large, it predicts a much greater critical stress than for

unbounded expansion of a pre-existing void by a dilatant stress,

Equation 2. For example, if E is given a value of 2 MPa,
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representative of soft elastomeric solids, and G is given a value-C

of 1 kJ/m, typical of reasonably strong rubbery solids, then the

fracture stress is calculated from Equation 13 to be about 7.5

MPa, when the initial crack radius is assumed to be 25pm and

putting a = 1. On the other hand, the mean applied stress at

which a critical dilatant stress of 5E/12 is reached in the center

is only about 0.9 MPa. Thus, void expansion is likely to be the

first mechanism of internal fracture encountered in stretching

thin bonded layers, unless they contained exceptionally large

initial cracks.

For a thin layer bonded between spherical surfaces, the

critical stress for crack growth is much smaller, by the factor

h/a, Equation 14. Previous analyses have shown that the maximum

dilatant stress - P set up in the center of a thin layer is

increased in inverse proportion, relative to the mean applied

stress (15,16),

- P m /a a/h

so that the critical stress ac for void expansion will be reduced

by the same factor. Thus, the relative tendency for growth of an

initial crack compared to expansion of an existing void is not

changed. Both processes are made easier, and by the same factor,

in a thin layer bonded between spherical surfaces. Again.

therefore, void expansion is likely to be the first failure

encountered.

In the above discussion, failure by debonding at the interface

haz been ignored. As shown previously, stresses for interfacial
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failure will be higher than for growth of a central crack if the

fracture energies are similar. Thus, only if the interface is

much weaker than the material itself (or if the interface contains

unusually large debonds) will debonding occur before void

formation.

4. Conclusions

(a). Griffith's fracture criterion for growth of a circular crack

of radius c is given in Equation 1. For small cracks in thin

bonded layers, the left-hand side of this relation, a(AW)/c, is

given approximately by 3W 02/h3 , where h is the layer thickness,

i.e., the minimum distance separating the rigid bonded surfaces.

For small cracks in thick layers this term is given approximately

by 3W 2 2/a2h, where a is the radius of the layer. Thus, the

effective volume of the specimen, from which energy is released by

crack growth, is given approximately by h3 in the first case and

by the volume of the entire layer (a2 h) in the second.

(b). In thin layers, the dependence of this term on c becomes

much smaller as the crack grows. Thus a crack will reach a

stable size eventually, without causing the specimen to break in

two. In thick layers, on the other hand, once the condition for

crack growth is met a crack will grow catastrophically.

(c). The reduction in strain energy caused by an interfacial

crack is only one-half of that caused by a central crack of the

same size. Thus, other things being equal, a central crack will

grow preferentially

(d). Simple finite element analyses provide useful information

about fracture in model systems, like those considered here, that
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are somewhat too complicated to be amenable to solution in closed

form and yet seem sufficiently general to be of wide application.
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Table 1: Values of Z for various thicknesses h of an elastic

layer bonded between two spherical or two flat surfaces.

Li and Lc denote values for interfacial and center cracks

respectively.

Spherical end-pieces

h Z-i -i -c

P= 0.4999 0.49 0.4999 0.49

50 0.032 0.026

10 0.16 --- 0.12

5 0.30 --- 0.22

1 0.98 0.98 0.75 0.73

0.5 1.31 1.36 1.06 1.15

0.1 2.41 2.31 2.15 2.00

Flat end-pieces

a/h Li!.a__ -i -i -c -c

.= 0.4999 0.49 0.4999 0.49

50 0.028 --- 0.022 ---

10 0.104 --- 0.085 ---

5 0.21 --- 0.16 ---

1 0.89 0.97 0.67 0.67

0.5 1.53 1.60 1.00 1.02

0.1 ---- 2.37 2.10 2.06
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Table 2: Coefficient a of the relationship, . : ah, for thin

bonded layers. aiand !c denote values for interfacial and center

cracks respectively.

Spherical surfaces 1.58 1.26

Flat surfaces 1.07 0.87
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Figure Legends

1. (a) A center crack and (b) an interfacial crack in an elastic

layer bonded between rigid spherical end-pieces.

2. (a) A center crack and (b) an interfacial crack in an elastic

layer bonded between rigid flat plates.

3. Sketch of finite element arrangements for an elastic layer

containing a center crack, bonded between two rigid spheres.

4. Sketch of finite element arrangements for an elastic layer

containing a center crack, bonded between two rigid plates.

5. Computed values of reduction AW in original elastic energy W-O

due to the presence of a crack of radius c. Filled circles,

interfacial crack; open circles, center crack. Spherical

end-pieces, radius a and separation h; h/a = 0.1.

6. Computed values of reduction AW in original elastic energy 0

due to the presence of a crack of radius c. Filled circles,

interfacial crack; open circles, center crack. Spherical

end-pieces, radius a and separation h; h/a = 2.

7. Computed values of reduction AW in original elastic energy 0

due to the presence of a crack of radius c. Filled circles,

interfacial crack; open circles, center crack. Flat end-pieces,

radius a and separation h; h/a = 0.1.

8. Computed values of reduction AW in original elastic energy Ho

due to the presence of a crack of radius c. Filled circles,

interfacial crack; open circles, center crack. Flat end-pieces,

radius a and separation h; h/a = 2.

9. Scaling parameter e for small cracks in an elastic layer

bonded between rigid spherical end-pieces, obtained from initial

linear relations like those shown in Figures 5 and 6, plotted
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against the relative thickness h/a of the elastic layer. Filled

circies, interfacial cracks; open circles, center cracks.

10. Scaling parameter e for small cracks in an elastic layer

bonded between two rigid flat end-pieces, obtained from initial

linear relations like those shown in Figures 7 and 8, plotted

against the relative thickness h/a of the elastic layer. Filled

circles, interfacial cracks; open circles, center cracks.
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Figure 1
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Figure 2
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